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Abstract 
This paper presents a new strategy for  autonomous  navigation of planetary  rovers 

using  the fuzzy logic framework and a novel on-board measure of terrain  traversabil- 
i t y .  The  navigation strategy is comprised of three simple,  independent behaviors with 
different levels of resolution.  The  navigation rules for the  first behavior, goal-seeking, 
utilize  the global information about the goal position  to  generate  the  steering and speed 
commands  that drive  the rover to  the designated destination.  The  navigation rules for 
the second behavior, terrain-traversing,  use  the regional information about the  terrain 
quality to produce steering and speed commands  that guide the  rover toward the  safest 
and the  most traversable terrain.  The  inclusion of the regional terrain data (such as 
slope and roughness) in the rover navigation strategy is  a major  contribution of this 
paper. The navigation  rules for the third behavior, collision-avoidance,  employ  the local 
information about the  en-route obstacles to develop steering and speed commands  that 
maneuver  the rover around the encountered obstacles. The  recommendations of these 
three behaviors are then integrated through appropriate weighting factors  to generate 
the final control actions for the steering and speed commands  that are executed by  the 
rover. The weighting factors are  produced b y  fuzzy rules  that  take into account  the 
current  status of the  rover. The complete rover navigation strategy consists of a  total 
of 37 fuzzy logic rules for  the behaviors and their weighting factors.  This  navigation 
strategy requires no a priori  information about the  environment, and uses  the on-board 
traversability  analysis  to enable the rover to select easy-to-traverse  paths autonomously. 
The  Rover Graphical Simulator developed at JPL for  test and validation of the naviga- 
tion rules, as well as for  graphical visualization of the  rover motion,  is described. Three 
graphical simulation case studies are presented to  demonstrate  the capabilities of the 
proposed navigation strategy for planetary  rovers.  Finally,  the  navigation  algorithm for 
the  Sojourner rover is discussed and compared with  the proposed strategy. Simulation 
studies clearly demonstrate  the  superior  performance of this  fuzzy  navigation strategy 
relative to  the  Sojourner algorithm. 
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1 Introduction 
In  dealing  with  day-to-day processes, humans  make  subjective decisions  based  on qualitative 
information.  Their  perception of processes  is  based  on qualitative,  rather  than  quantitative, 
assessments  obtained  from low quality  and  approximate  measurements.  The  human  control 
strategy for a process  typically  consists of simple,  intuitive  rules  based  on  prior  experience 
that  are  brought  to  bear  to affect the process. For instance,  in  the process of driving a car, 
the  human  driver  turns  the  steering wheel to  the  right if the  car veers too  far  to  the  left, 
and vice versa.  The  driver  determines  the  degree of course  correction  intuitively  and  based 
on  his  driving  experience,  rather  than  relying  on  mathematical  modeling  and  formulation 
of the process. His actions  are based  on how far  from the  lane  the  car  has  moved,  and  on 
how fast  the  car is moving.  Similarly, the driver  adjusts  the  speed of the  car  based  on  his 
subjective  judgment of the  road  conditions.  It is  highly  desirable to  capture  the  expertise of 
the  human  driver  and  to utilize  this knowledge to develop autonomous  navigation  strategies 
for planetary rovers.  Fuzzy logic provides a means  to  accomplish  this goal.  Fuzzy logic pro- 
vides a formal  methodology for representing  and  implementing  the  human  expert’s  heuristic 
knowledge and  operational  experience. Using the fuzzy logic framework, the  attributes of 
the  human reasoning and decision making  can  be  formulated by simple IF (antecedent) - 
THEN (consequent) rules  and  easily-understandable linguistic representations.  The linguis- 
tic values in  the  rule  antecedents convey the imprecision  associated with  on-board  sensor 
measurements; while those  in  the  rule  consequents  represent  the vagueness inherent  in  the 
reasoning  processes. The  operational  strategies of the  human  expert  driver  can  be  transferred 
via  fuzzy logic tools to  the rover navigation  strategy  in.the form of a set of simple  conditional 
statements  composed of linguistic  variables.  These  linguistic  variables  are  defined by fuzzy 
sets  in  accordance  with user-defined membership  functions. The  main  advantages of a fuzzy 
navigation  strategy lie  in the  ability  to  extract  heuristic  rules  from  human  experience  and to  
obviate  the  need for an  analytical  model of the process. The  natural  appeal of fuzzy logic 
to rover navigation  has  motivated  considerable research in  this  area  in  recent  years [see,  e.g., 
1-30].  Most of this  research, however, has  been-focused  on  indoor  mobile  robots  that  operate 
in  highly  structured,  or  otherwise, man-made environments. 

NASA has  planned  an  ambitious  set of missions to  launch a series of spacecraft to  land  on 
the  planet  Mars.  These  unmanned missions will carry  mobile  robots (rovers) t o  explore  the 
Martian  surface  and  to  carry  out science  missions by placing  instruments  on  or  sampling  from 
soil and rocks  for  analysis. The first  in  this  series,  the  Mars  Pathfinder mission that  landed 
on  Mars  in  July  1997, deployed the  Sojourner rover on  the  Martian  terrain  for  positioning 
science instruments  against  designated rocks, as shown in  Figure 1. After  the success of 
the  Sojourner  rover,  there  has  been a strong  motivation to  develop future  planetary rovers 
with  enhanced  capabilities  that  can  explore  remote  planets  autonomously  and  intelligently 
with  minimal  human  intervention.  The  autonomy  and  on-board  intelligence  are  particularly 
important for  Mars  missions  where significant communication  time-delay  (up to 40 minutes 
round-trip)  makes  the  teleoperation of rovers from Earth  an impossible  task.  Therefore, 
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on-board rover autonomy is a key enabling technology for future  space  exploration missions. 
This  paper develops a. new strategy for autonomous  navigation of planetary rovers  using 

the fuzzy logic framework. Unlike conventional  indoor  mobile  robots,  these  rovers  are  required 
to  traverse  harsh, natural terrains  on  remote  planetary  surfaces.  The rover navigation  strategy 
developed  here  is  comprised of three  simple  behaviors: goal-seeking, terrain-traversing,  and 
collision-avoidance. The fuzzy  rules  for the goal-seeking  behavior use the global information 
about  the goal  position  to  make  recommendations for the rover speed  and  steering.  The 
fuzzy rules for the  terrain-traversing  behavior  incorporate  the regional information  about  the 
terrain  to  produce  recommendations for the rover speed  and  steering.  The fuzzy  rules  for the 
collision-avoidance  behavior  utilize the local information  obtained  from  en-route  obstacles to  
generate  the rover  speed and  steering  recommendations.  Finally,  the  recommendations  from 
the  three  behaviors  are  integrated  with  appropriate  weighting  factors  to yield an  autonomous 
navigation  strategy for the  planetary rover that requires  no a priori information  about  the 
environment. 

The  paper is  organized  as follows. The rover navigation  behaviors based on  goal,  terrain, 
and  obstacle  information  are  presented  in  Sections 2-4. The  integration of these  behaviors 
into a unified  rover navigation  strategy is  discussed  in  Section 5. Sections 6 and 7 describe  the 
Rover Graphical-Simulator  and  present  three  computer  simulation  studies.  The  navigation 
algorithm of t h e  Sojourner rover is  discussed  in  Section 8 and  compared  with  the  proposed 
strategy.  Finally,  Section 9 reviews the  paper  and  draws conclusions  from this work. 

2 Navigation Based on Global Goal Information 
The  problem  considered  in  this  paper is to  safely navigate a rover on a planetary  surface 
from a known  initial  position  to a user-specified goal position.  Figure 2 depicts  the  setting 
for this  problem,  where  the  position of the rover center  is  denoted by the  coordinates ( x ,  y )  
with  respect  to a fixed reference frame defined on the  terrain',  and  the  orientation of the 
rover body  relative to  the reference  x-axis is represented  by the angle 8, which is  defined to  
be  positive  in the clockwise direction.  The  control  variables of the rover are  the  translational 
speed v and  the  rotational  speed  (or  turn  rate)  w,.where v = 4- and w = $f. The 
rover speed v is  represented by the  four  linguistic fuzzy sets  {STOP,  SLOW,  MODERATE, 
FAST }, with  the  membership  functions shown in  Figure  3a.  Similarly,  the rover turn  rate w 
is  represented by the five linguistic  fuzzy  sets { FAST-LEFT,  SLOW-LEFT,  ON-COURSE, 
SLOW-RIGHT,  FAST-RIGHT }, with  the  membership  functions  shown in Figure  3b. 

In  this  section, we present fuzzy  rules for navigation of the rover from its  initial  position 
to  the desired  goal  position.  Two  sets of rules  are developed for the rover speed 21 and  the 
rover turn  rate w. The basic  idea  behind the goal-seeking navigation  rules is that  the rover 
tries to: 

'Since the rover  will  always  move on the three-dimensional terrain,  its z-coordinate is dictated by the 
terrain geometry. 
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0 Approach  the goal with a speed  proportional  to  the  distance between the  current posi- 
tion ( x c ,  yc) and  the goal  position ( x g ,  y,), defined as  the  “position  error” d and com- 
puted on-line as (see Figure 2): 

The  position  error d is  represented by the four  linguistic  fuzzy  sets { VERY  NEAR, 
NEAR,  FAR, VERY FAR }, with  the  membership  functions  depicted  in  Figure 3c. 

0 Rotate  toward  the goal  position by nullifying the  “heading  error” 4, which is the  relative 
angle by which the rover needs to  turn  to face the goal directly (see Figure 2). The 
heading  error is computed on-line  as: 

where 8, is  the  current  orientation of the rover. The  heading  error 4 is  represented by 
the five linguistic fuzzy sets { GOAL-FAR LEFT,  GOAL-LEFT,  GOAL-HEAD  ON, 
GOAL-RIG-HT, GOAL-FAR RIGHT }, with  the  membership  functions  depict,ed in 
Figure  3d. 

Once  the rover is  sufficiently close to  the goal, that is, d 5 E where E is a small user- 
specified threshold,  the  above  definition of the  heading  error $ is  changed  to: 

4 = 0, - 0, (3) 

where 0g is the desired  goal  orientation.  With  this  change,  the fuzzy  rules  cause an in-place 
rotation of the rover that will align the rover with.the user-specified goal orientation at the 
destination’. 

We shall now present the fuzzy navigation  rules for goal  seeking in  the following  subsec- 
tions. 

2.1 Steering Rules 
The rover turn  rate w depends  on  the  heading  error 4, where the angle $ is defined to  be 
positive  in  the clockwise direction.  The fuzzy  rules for the rover turn  rate  are as follows: 

0 IF 4 is  GOAL-FAR LEFT, THEN w is FAST-LEFT. 

0 IF $ is  GOAL-LEFT,  THEN w is SLOW-LEFT. 

2Note that, depending on the steering mechanism of the rover, the in-place rotation may or may not  be 
achievable. For instance,  this  rotation is possible for skid-steering and Sojourner-type rovers but not for 
car-like rovers. 
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0 IF  4 is GOAL-HEAD ON, THEN w is ON-COURSE. 

0 IF  4 is  GOAL-RIGHT,  THEN w is SLOW-RIGHT 

0 IF q5 is GOAL-FAR  RIGHT,  THEN w is F-4ST-RIGHT. 

It is seen that  the rover turn  rate w is  only  a  function of the heading  error 4, and is independent 
of the rover speed w .  

2.2 Speed Rules 

The rover speed w is dependent on the position error d .  The fuzzy rules  for the rover speed 
are  as follows: 

0 IF  d is VERY  NEAR,  THEN w is STOP. 

0 IF d is NEAR,  THEN w is SLOW. 

0 IF d is FAR,  THEN w is MODERATE. 

0 IF d is VERY  FAR,  THEN v is FAST. 

In  addition,  to decrease the rover turning  radius when it is not  pointed at the goal position, 
the following rule is added  to  the above speed rules: 

0 IF  d is NOT VERY  NEAR  AND 4 is NOT  GOAL-HEAD  ON,  THEN w is SLOW 

The effect of this  additional  rule is to slow down the rover motion  when  it is not close to  and 
not aligned with  the goal. 

3 Navigation Based on Regional Terrain  Information 
In a recent paper [31], the concept of Traversability Index is introduced  as a simple mea- 
sure for quantifying  the  suitability of a planetary surface for traverse by the rover un- 
der  consideration3.  This  index is represented by the  set of four  linguistic fuzzy sets { 
POOR,  LOW,  MEDIUM,  HIGH }, with  the  membership  functions shown  in Figure  4a.  The 
Traversability  Index is defined in terms of the  terrain slope Q and  the  terrain  roughness p by 
a set of simple fuzzy relations  summarized in Table 1 1311. This  index is computed  on-board 
the rover using  stereo  cameras  and  associated software [32], and  enables  the rover to select 
easy-to-traverse  'terrains  autonomously. 

3The Traversability Index  depends on the wheel  design and  traction mechanism of the rover  which deter- 
mine its hill  climbing and rock  climbing capabilities. 
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In  this  section,  the  Traversability  Index is  used to develop  simple  rules  for determination 
of the rover steering  and  speed  on a planetary  surface.  In  other  words,  the  Traversability 
Index is used to  guide  the rover toward the safest  and  the  most  traversable  terrain.  This 
index  provides a simple  means for incorporating  the regional information perceived  from the 
terrain  quality  data  (out  to  about 10 meters)  into  the rover navigation  strategy.  The  basic 
idea  behind  the  terrain-traversing  behavior is that  the rover tries  to: 

0 Rotate  to face the  terrain region with  the  highest value of Traversability  Index, i.e., the 
safest and  the  most  traversable  terrain is  selected.. 

0 Adjust  its  speed  based on the  quality of the  terrain  to  be traversed to avoid damaging 
the rover and  ensure  safety of rover .motion. 

We shall now discuss the fuzzy  rules for determination of the rover turn  rate  and  the rover 
speed  based  on the Traversability  Index 7. 

3.1 Steering Rules 
It  is  assumed  that  the rover can  only move in the forward  direction  (i.e., reverse motion is 
not allowed) and-can  turn in-place. The  terrain  in  front of the rover is partitioned  into five 
regions as shown  in  Figure  4b,  namely:  front,  front-right,  front-left,  right, and left of the 
rover at a distance  up  to R from the rover,  where R defines the  radius of the sensing  envelope 
and  is  typically 10 meters [32]. As shown in Figure4b, “front”  refers to  the region directly 
ahead of the rover given its present  heading,  “front-right”  and  “front-left”  regions are  sectors 
between 0” and  f45” relative  to  the rover heading,  and  “right”  and “left”  regions are  sectors 
between k45”  and f90” relative  to  the  heading.  The  Traversability  Indices for the above 
five regions  are  computed  from  the  measurements’.of  the  terrain  slope  and  roughness that 
are  obtained by the vision system  on-board  the rovef [31, 321. Therefore, at any  instant, five 
crisp  Traversability  Indices  are  computed for the five possible traversable regions  described 
above,  namely: 71, rjl, r f ,  rf,, and 7,. The  on-board  software  then  compares  these five crisp 
quantities  and  selects  the  one  with  the  highest value r*, that is, the  most  traversable region 
is  chosen4.  Let r* = Max{ rl, rfl, r f ,  rf,, 7,). Then,  the  four  turn  rate  rules  are as follows: 

0 IF r* = T I ,  THEN w is FAST-LEFT. 

0 IF  T* = 7iz, THEN w is SLOW-LEFT. 

0 IF r* = rf,, THEN w is SLOW-RIGHT. 

4When  the  situation has a non-unique solution, i.e., there is  more than one region with the highest r ,  then 
the one which  is  closest to  the front region  is  chosen so that unnecessary  rotations are avoided. In the special 
cases  when rr = 71 = r* or rf ,  = rfl = r*, in order to avoid  confusion, additional rules should  be  added to 
steer  the rover to  the left as the preferred steering direction. 
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0 IF T* = T ~ ,  THEN w is FAST-RIGHT. 

Note that since the  antecedents of these rules are  crisp,  only  one of the rules will fire and  the 
consequent of this  rule will be exclusively one of the  output fuzzy sets.  Observe that when 
T* = ~ f ,  i.e.,  the  most  traversable region is in front of the rover, the rover is already  heading 
in the  correct  direction  and n.o course change is necessary. Therefore,  no new steering rule is 
needed  in this case. 

3.2 Speed Rules 
Once the  direction of traverse is chosen based on the relative values of T ,  the rover speed v 
can  be  determined based on the value T* of the Traversability Index T in the chosen region. 
This  determination is formulated  as a set of four simple fuzzy rules for speed of traverse as 
follows: 

0 IF T* is POOR,  THEN 2, is STOP. 

0 IF  r* is LOW, THEN v is SLOW. 

0 IF T* is M€DIUM, THEN v is MODERATE. 

0 IF T* is HIGH,  THEN v is FAST. 

Finally, for safety reasons,  it is desirable to  stop  the rover motion  momentarily when the 
rover needs to change its  heading. To this  end,  the following rule is added for rover speed: 

0 IF  T* # ~ f ,  THEN v is  STOP. 

In  practice,  other  speed rules will fire as well and hence the rover  will not  make a complete 
stop. None-the-less, the effect of this rule is to slow down the rover for turning  operations. 

4 Navigation  Based  on Local  Obstacle  Information 
In  this  section, fuzzy logic rules are described which govern the rover behavior  based  on 
the local information  about  the  en-route  obstacles, such as  large rocks. This  information is 
obtained on-line and in real-time by the proximity  sensors  mounted  on the rover. Different 
types of proximity sensors can  be used for this  purpose,  ranging  from low-resolution infra-red 
sensors to  high-resolution  laser detectors [see, e.g., 331. The  range of operation of these local 
sensors is typically 10-30 cm, which is about two  orders-of-magnitude  smaller than  that of 
regional sensors used in  Section 3. Note  that precise measurements of the  obstacle  distances 
are not needed,  because of the multi-valued  nature of the linguistic fuzzy sets used to  describe 
them. 
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In  the  present  analysis,  it is assumed that  there  are  three  proximity sensors mounted on 
the rover facing the  three different directions of front,  right,  and  left.  These sensors report 
the  distances between the rover and  the closest front  obstacle d,, the closest right  obstacle d,, 
and  the closest left obstacle dl within  their  ranges of operation.  Furthermore,  obstacles  are 
sensed up  to  the sensing radius T ,  which  is typically 10-30 cm.  The  three  obstacle  distances 
{ d f  , d,, dl } are continously  measured and  updated  during rover motion.  The  steering 
and  speed  rules use this local information  to  maneuver  the rover around  the  obstacles  and 
avoid potential collisions. Each  obstacle  distance d f ,  d,, or dl is represented by the  three 
linguistic fuzzy sets { VERY  NEAR,  NEAR, FAR }, with  the  membership  functions shown 
in Figure 5. Note  that we can have different definitions of these membership  functions for 
front  obstacle  and side  (left and  right) obstacles so that front  and side collisions will have 
different  sensitivities. 

The basic idea  behind  the  obstacle  avoidance rules is that  the rover tries  to: 

0 Turn  to face a region with no  nearby  obstacles or with  farther  obstacles. 

0 Adjust  its  speed of motion  depending on the  distance  to  the closest front  obstacle. 

The  obstacle  avoidance  navigation rules are discussed below. 

4.1 Steering Rules 
The goal of the  steering rule  set is to steer the rover clear of the obstacles. This goal is 
accomplished by sensing the  three  obstacle  distances d f ,  d,, and dl and  reacting  according  to 
the following five fuzzy logic rules: 

0 IF d f  is NOT FAR  AND dl is FAR,  THEN  w.is  SLOW-LEFT 

0 IF d f  is NOT FAR AND dl is NEAR  AND d ,  is FAR,  THEN w is SLOW-RIGHT. 

0 IF d f  is NOT FAR  AND dl is NEAR  AND d ,  is NEAR,  THEN w is SLOW-LEFT. 

0 IF d f  is NOT FAR  AND dl is NOT FAR  AND d ,  is VERY  NEAR,  THEN w is SLOW- 
LEFT. 

0 IF d f  is NOT FAR  AND dl is VERY  NEAR  AND d ,  is NOT  VERY  NEAR,  THEN w 
is SLOW-RIGHT. 

The  above  rule  set is summarized in Table 2 when d f  is NOT FAR. The following points 
are  noted  about  the  above  steering rules.  First.,  when d f  is FAR,  i.e., the  front of the .rover 
is clear of obstacles,  the rover will not collide with  any obstacles and  no  corrective  actions 
need to  be  taken.  Therefore,  the collision avoidance  steering  rules  are  activated  only  when 
the  situation is  otherwise.  Second,  the “preferred” direction of turn is taken  to  be LEFT, 
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i.e.,  when the rover needs to  turn  to avoid an  impending collision, it tends  to  turn left. The 
choice of LEFT  instead of RIGHT is arbitrary,  but selection of a preferred turn  direction is 
essential to avoid the possibility that  simultaneous left and  right  obstacles  can  result in a 
no-turn  recommendation even though  there may be  an  obstacle  straight  ahead. 

4.2 Speed Rules 
The  speed rules for collision avoidance are very simple. Basically, the rover is required to 
slow down as  it  approaches  the closest front  obstacle.  There  are two fuzzy rules as follows: 

0 IF  d ,  is  VERY  NEAR,  THEN v is STOP. 

0 IF d f  is NEAR,  THEN v is SLOW. 

Again,  note that when the  front  obstacle  distance is FAR, collision avoidance is not  activated 
and  no  corrective  actions need to  be  taken. 

5 Integration of Seek, Traverse,  and  Avoid  Behaviors 
In  the  preceding  sections, we discuss three individual behaviors of goal-seeking, terrain- 
traversing,  and collision-avoidance. Each  behavior  accomplishes a single objective  within 
a restricted  context.  The  three  behaviors  operate independently of one  another  and  generate 
recommendations based on the sensed data  (obtained  from  hardware or software  sensors) 
and  the desired objective.  The  behaviors also operate at three different ranges of informa- 
tion,  with  the goal-seeking behavior at global, the  terrain-traversing  behavior at regional, and 
the collision-avoidance behavior at local ranges. In  this  section,  these  three  behaviors  are 
integrated  to  form a unified autonomous navigatio'n strategy for planetary rovers without 
a priori knowledge about  the  environment.  The  approach  adopted  here for behavior  inte- 
gration  proceeds in two  stages.  In the first stage,  the goal-seeking, terrain-traversing,  and 
collision-avoidance  behaviors  make their  individual,  independent  recommendations for rover 
navigation.  In  the second stage,  these  recommendations  are  integrated by using  appropri- 
ate weighting  factors  to  generate  the  combined,  coordinated control actions for the rover 
navigation  based on the rover status. 

Consider  the rover navigation  strategy shown in the block diagram of Figure  6a.  Each 
of the  three  behaviors  generates a set of independent  recommendations for the  translational 
and  rotational  speeds v and w based  on its fuzzy rules discussed in  Sections 2-4. These 
sets of recommendations  are  denoted by {us} ,  {us} ,  { d } ,  { w t } ,  and {v"} ,  {w"},  where the 
superscripts s ,  t ,  and a refer to  the seek,  traverse,  and avoid behaviors,  respectively. These 
recommendations  are  then "weighted" by the crisp weighting factors s", t", and a" assigned 
to  the  outputs of the goal-seeking, terrain-traversing,  and collision-avoidance behaviors, re- 
spectively. In  other words, the final control  actions 3 and 5 result  from  defuzzification of the 
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weighted aggregated  outputs of the goal-seeking, terrain-traversing,  and collision-avoidance 
rule  sets.  Mathematically,  the final  control  actions  are  computed  using the Center-of-Gravity 
defuzzification method [34] as: 

s"Cv;.A; + twCvi.AE, + a"Cvp".Ai 
s"CA; + twCA; + a*CAg 

s"Cw;.B; + t"Cw:.Bi + awCwi.Bi 
s"CBi + twCBj + aWCBp" 

fi= 

w =  

In  the  above  equations, up and A, are  the  peak value and  the  truncated  area  under  the 
membership  function for the velocity  fuzzy sets, while w, and B, are  the  corresponding 
values  for the  turn  rate fuzzy sets. 

The weighting  factors sw, t", and a" represent the  strengths by  which the goal-seeking, 
terrain-traversing,  and collision-avoidance recommendations  are  taken  into  account  to com- 
pute  the final control  actions f i  and 6. These  factors  are  represented by the  three  linguistic 
fuzzy sets  {LOW, NOMINAL,  HIGH }, with  the  triangular  membership  functions  with  peak 
values of 0, 1 and, 10, respectively, as shown in  Figure  6b.  Three  sets of weight rules for the 
three  behaviors  are now presented. The goal-seeking weight rules  are  as follows: 

0 IF d is  VERY NEAR, THEN s" is  HIGH. 

0 IF d is NOT VERY  NEAR,  THEN s" is  NOMINAL. 

0 IF  r* is POOR OR r* is LOW,  THEN s" is LOW. 

0 IF d f  is  NOT  FAR,  THEN s" is LOW. 

The  terrain-traversing weight  rules are  as follows: ' .  

0 IF d is  VERY  NEAR,  THEN t" is LOW. 

0 IF d is NOT VERY NEAR AND TJ # r*, THEN t" is  HIGH. 

0 IF  d is NOT VERY  NEAR AND r* is POOR  OR r* is LOW,  THEN t" is HIGH. 

0 IF r* is  NOT  POOR AND r* is NOT  LOW AND rf = r*, THEN t" is NOMINAL. 

Finally, the collision-avoidance  weight  rules are as follows: 

0 IF d is VERY  NEAR,  THEN a" is  LOW.. 

0 IF d is NOT VERY  NEAR  AND d f  is FAR,  THEN a" is LOW. 

0 IF d is NOT VERY  NEAR  AND d f  is NOT  FAR,  THEN a" is HIGH. 
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-4t any  control cycle, the above  sets of weight rules are used to calculate  the  three  crisp 
weighting  factors  using  the  Center-of-Gravity defuzzification method [34]. The  resulting 
crisp  weighting  factors  are  then used to  compute  the final control actions for the rover speed 
and  turn  rate  that  are executed by the rover. Note that  the { v }  and { w }  recommendations 
from  each  behavior  are independent of other behaviors, however, the weighting  factors  are not 
independent since they control  behavior  interactions. The  complete rover navigation  strategy 
consists of a total of 37 fuzzy logic rules for the behaviors  and  their weighting factors.  Finally, 
to avoid sudden  variations in the speed  and  steering  commands,  the  crisp  control  actions for 
il and 3 are  averaged as: 

where the  subscripts n and n - 1 denote  the present and  the  previous  sampling  instants.  This 
averaging  operation  smoothes  out  sudden  changes in the control actions  and  prevents  jerky 
motions of the rover. 

6 Rover  Graphical  Simulator 
The Rover Graphical  Simulator  (RGS) provides an essential tool for visualization of the 
rover motion  using  the  reasoning  and decision making  capabilities  provided by the fuzzy logic 
navigation  strategy developed in this  paper.  RGS is written  as a Java  applet for platform 
independence,  and  runs on a PC as well as on Sun  and SGI Unix  machines. 

A  snapshot of the  principal  RGS window is shown in Figure  7a.  It consists of 

0 A large  central  panel  containing a simple, two-dimensional graphical  simulation  depict- 
ing a terrain  with a rover moving among obstacles and regions of various traversability 
indices. 

0 A lower panel  containing  buttons for selecting  pre-stored test cases and  navigation 
algorithms,  and for turning  on or off interactive  placement  and  orientation of the  initial 
and  the goal rover configurations  (i.e., positions  and  orientations). 

0 An upper  panel displaying duration of the  current or the  most recent execution,  and a 
set of algorithm-dependent  buttons. 

In  the  graphical  simulation  panel,  registration.  dots  are displayed every 100 pixels - the 
coordinates used in the  simulation  are in units of screen pixels. For each of the twelve pre- 
stored  test cases, RGS shows the  initial  and  the goal rover configurations as  outlines  and, 
when  execution  is  started,  animates  the rover moving  from the  initial  configuration  toward 
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the goal  configuration.  Both  positions  and  orientations of the  initial  and  the goal  rover 
configurations  can  be  changed  interactively  using the mouse buttons.  This  feature  enables 
the user to  create  any  desired  scenario in real-time  and  to  test  out  various  elements of the 
navigation  strategy.  The rover motion is a discrete  numerical  simulation  with a constant 
delta-time  between  updates.  At each simulation  step, a dot is placed at the old rover position 
and  the  graphical rover is  redrawn at the new,  updated rover position.  This  has  the  effect of 
leaving a trail of dots  behind  the rover which depicts  the  path  traversed by the rover,  while 
the  spacings  between  the  dots  indicate  the rover speed.  Obstacles  and regions of poor or 
low traxersability  are  depicted  as color-coded filled circles, with buffer zones around  them 
indicated by  green  enclosing  circles. 

RGS uses the  navigation  algorithm selected by the user to  drive an  animation of the rover 
moving  from the  initial  configuration  toward  the goal  configuration. The  navigation algo- 
rithms  currently  implemented  include: (1) simple  goal-seeking with  no collision  avoidance, 
(2) goal-seeking with  virtual force repulsion for avoidance of obstacles,  analogous to  [35 ] ,  (3) 
fuzzy logic navigation  with  selectable  rule  sets for goal-seek, traverse-terrain, avoid-collision, 
and behavior  weights  described  in  Sections 2-5, and (4) the  Sojourner  navigation a1,gorithm 
used on  the  Mars  Pathfinder  mission,  adapted for RGS. For all of these  algorithms,  the rover 
is constrained to  make  no sideway motions; at each simulation  step,  it moves forward by a dis- 
tance  computed by the selected  navigation  algorithm,  and  then  turns by an  angle  computed 
by the  navigation  algorithm. 

Figure  7b is a screen snapshot showing the Execution  Control  Graphical User Interface 
(GUI) window on  the left and  the  Rule  Strength  Bar  Chart window on the  right.  The  buttons 
in  the  Execution  Control window allow the user to  start execution of a test  case, to  pause 
or  continue  execution, to  single-step  execution  from a pause, to  abort execution of a test 
case, and  to speed  up or slow down the  simulation  relative  to  real-time.  The  DEBUG  button 
turns on a flag  which generates  diagnostic data  in.the  start-up window, and  the Log Crisp 
Inputs/Outputs  button  prints  data  during a simulation to  the  start-up window. The  Stand- 
off Distance field allows user setting of the stand-off distance, which is  used to  create a buffer 
zone around  both  avoidance  obstacles  and  low-traversability regions. The  Rule  Strength  Bar 
Chart is a dynamic  graphical  display of the levels at which the 37 fuzzy logic rules  are fired 
at any  instant in time.  Execution of any  test case  brings  up a real-time  bar  chart  display of 
the firing  strengths of all  the  rules,  as shown  in Figure  7b. 

All  of the  functionalities  for  supporting rover navigation  simulations  are  embedded  within 
the  RGS  application.  In  addition  to  the  graphical rover animation  and  the  Execution  Control, 
this  includes a built-in fuzzy logic engine for implementation of fuzzy logic rules, and  linguistic 
fuzzy sets  with user-defined membership  functions. For fuzzy logic navigation,  the  rule  sets 
for the  three  behaviors (seek-goal, traverse-terrain,  and avoid-collision) and  the  rule  sets 
for the weighting  factors  are  integrated  in  the fuzzy logic engine. The  algorithm-dependent 
buttons  in  the  top  panel of the  principal window (Figure  7a) allow the user to  select  particular 
rule  sets  for  the  behaviors  and  the weights, and  to  printout  the  current fuzzy  rules. 
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7 Simulation  Studies 
In  this  section,  graphical  simulation  results  are  presented  to  demonstrate  the fuzzy-based 
rover navigation  strategy developed in this  paper.  The  simulations .are performed  using the 
Rover Graphical  Simulator  (RGS) described in Section 6. Three case studies  are  presented in 
this  section.  In all cases, the  terrain  has HIGH  Traversability Index, unless stated otherwise. 

7.1 Case Study One 
In  this  case,  there is a large rock and a crater  with  POOR  Traversability  Index between 
the  initial  and  the goal positions of the rover, as  depicted in Figure  8a.  The  autonomous 
navigation  strategy is required to drive the rover to  the goal position while avoiding the 
impassable  crater  and  preventing collision with  the rock. Two  circular  safety  regions are also 
defined which are displaced  from the  crater  and  the rock by user-specified stand-off distances. 
The  path  traversed by the rover under  the fuzzy navigation rules is shown by the  dotted line 
in Figure 8a. It is seen that  the  test is successfully completed  with the rover reaching  the 
goal safely, while avoiding  both  the  crater  and  the rock. 

7.2 Case Study Two 
In this  case,  there  are two  large rocks and a crater  with  POOR  Traversability  Index between 
the  initial  and  the goal positions of the rover, as  depicted in Figure  8b.  The rover is required 
to drive to  the goal position while avoiding both rocks and  the  crater.  Figure  8b  depicts  the 
path  traversed by the rover. It is seen that  the  test is successfully completed  with  the rover 
reaching  the goal safely, and  both rocks and  the  crater  are avoided. 

7.3 Case Study Three 
In  this  case,  there  are two  large  rocks, a crater  with  POOR  Traversability  Index,  and a 
region of high rock density  with  LOW Traversability Index between the  initial  and  the goal 
positions of the rover, as  depicted in Figure 8c. The rover is required to  drive to  the goal 
position  while  avoiding  both rocks and  both  impassable regions. Each rock and  impassable 
region is surrounded by a user-defined safety zone. The  path traversed by the rover under 
the fuzzy navigation rules is shown by the  dotted line in Figure 8c. It is seen that  the  test is 
successfully completed  with  the rover reaching the goal safely, while avoiding both rocks and 
the two  impassable regions. 

8 Comparison  with  Sojourner  Navigation  Algorithm 
When  the  Pathfinder  spacecraft  landed on Mars  in  July 1997, the  Sojourner rover emerged 
from  the  lander,  taking  pictures  from  the  Martian  terrain  and  positioning science instruments 

13 



against  designated rocks. The  Sojourner rover is approximately 68 cm long by 48 cm wide, 
with a fully deployed height of 28 cm [36]. Including all instruments  and  telecommunications 
equipment,  the rover has a mass of about  17 kilograms.  Mobility is provided by a 6-wheel 
drive rocker-bogie mechanism,  with the two  front  and  the two rear wheels independently 
steerable,  allowing  both conventional steering  during  forward or reverse motion  as well as 
skid-steering for turn-in-place  maneuvers.  Forward  speed in nominal  terrain  is 0.4 m/min  or 
about 7 mm/sec. 

The  operational  procedure of the  Sojourner rover is now described briefly. The  path 
planning  portion of the rover mission is carried out  manually by the mission operator on 
Earth.  The  operator  designates a path  to  the goal location by specifying 3-D way-points for 
the rover using  stereo  imagery  from  the  stationary  lander.  Way-points  are specified using 
a stereo-graphic display to view the scene and a space-ball to  input 3-D coordinates.  The 
rover path is then  generated by connecting the way-points using straight-line  segments.  For 
autonomous  navigation between the way-points, the  Sojourner rover employs a simple  method 
based  on the behavior  control  approach [37, 381. This  approach uses very simple  steering logic 
based  on the  instantaneous  state of the rover hazard  detection sensors, and  does  not use an 
internal  map or memory of previously  encountered  hazards. Basically, the  navigation logic 
is as follows [39, 401: 

IF   t he re  i s  no hazard, 
THEN move forward and t u r n  toward the   goa l ,  
ELSE I F  t h e r e  is a hazard on t h e   l e f t ,  
THEN t u r n   i n   p l a c e  t o  t h e   r i g h t   u n t i l  no hazard i s  detected,  
ELSE IF   t he re  i s  a hazard on t h e   r i g h t ,  
THEN t u r n   i n   p l a c e  t o  t h e   l e f t   u n t i l  no hazard is detected.  

Additionally,  hazards in the  center  are avoided by. turning  right if that is clear,  otherwise 
turning left. The  Sojourner rover also has a limited 'ability to navigate between hazards  and 
to back  away  from dead-ends.  The simplicity of this  navigation  algorithm  makes  it  practical 
to  implement on the Intel 8085 rover flight processor embedded in Sojourner.  This  simplistic 
approach  can work effectively provided that  the  terrain is sparsely populated  with rocks. 

The  primary sensor data used for the  Sojourner  navigation is provided by a combination 
of cameras  and lasers that  project vertical stripes in 5  forward  directions.  After  software 
analysis of the  images,  the  resulting  data consists of 20 elevation estimates in a fan-shaped 
pattern  ahead of the rover, corresponding to 4  ranges for each of the 5 laser stripe directions. 
This sensor data ranges  from 56 cm to 81 cm in front of the rover. Sensor  scans  are  only 
performed when the rover is  stationary following a turn-in-place maneuver, a short  (6.5  cm) 
forward  traverse, or a backup away  from a hazard.  A  hazard is identified as either  an elevation 
datum  that is  above a certain  threshold, or a missing sensor datum  that may  indicate a drop- 
off ahead. If Sojourner  detects  such a hazard,  it  turns in place by the fixed amount of  45" 
away from  the  hazard  and  does  another sensor scan. If it still  detects a hazard  in  the  same 
direction,  it will turn  another 45" and so on  until it  has a clear sensor scan. If it  detects 
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a hazard in the  opposite  direction,  it will turn halfway back to  the  former  heading  and  try 
to squeeze through. If this fails, with  detection of a hazard  straight  ahead, it will backup 
and  turn  again,  and if this  still fails to find a clear path, it will  give up  and  report  failure to 
ground  control. The  Sojourner rover navigation  capability is limited by the low-resolution, 
noisy data provided by its  short-range sensors, and by the lack of longer range sensor data, 
as well as by the  simplistic  capabilities of its  behavior control implementation. 

The pre-flight performance of the  Sojourner rover is analyzed  and  evaluated extensively 
in [39]. It is  pointed  out  that  the  operator-based  path  planning  method used is subject  to two 
types of errors.  Way-point  coordinates  are  subject to  systematic  errors  caused by miscalibra- 
tion of the  cameras  and  pan/tilt axes, and also to  random  errors  caused by using  estimation 
of the  stereo-disparity of the way-points. Systematic  errors, in the form of translational  and 
rotational  errors in the  location of the  camera in the  lander  coordinate  frame,  compound  the 
way-point  designation  uncertainty.  The  performance  analysis  carried  out in [39] predicts that  
the combined  designation  error will  exceed the dimension of the vehicle for distances  beyond 
20 meters away  from the  lander,  making it difficult for the rover to find the  target rocks at 
such  ranges  based  on  the  designated-way-point  path  planning  method.  On  the  navigation 
side, the  simplistic  navigation  algorithm described above is severely restricted for collision 
avoidance  in  areas  commonly  found on  Mars that  are densely populated by rocks. 

The  terrain  navigation  behavior  introduced in [31] and described  in  section 3 allows the 
rover navigation  system  to look ahead  and to select the most  traversable  path.  The  only 
similar  capability  implemented on the  Sojourner rover  is the ability to  detect  the slope  in 
proximity of the rover from differences in sensor elevation data.  Sojourner’s  response to  
encountering a region of unacceptable slope is to turn away from the region. The proposed 
strategy, however, will see a region of low traversability  and decide either  to  turn away  from 
it before encountering  it, or to  continue  through  the region at a lower speed. 

In  the  Sojourner rover,  all navigation  behaviorsare  implemented  directly in 1300 lines of 
C code which obscures  the  underlying logic, and  theconditions for transitioning  between  the 
different behaviors  are  complex  and  distributed  within  the code. In  contrast,  the  proposed 
fuzzy logic-based algorithm is embodied in a total of 37 if-then  rules that  control  all  three 
behaviors  and  the weights that  are used to blend the behaviors5. The fuzzy rules are  far 
easier to  comprehend in order to modify  or tune  the  algorithm,  and it is easier to  add new 
rules to provide  more  sophisticated  behaviors. 

Another  advantage derived  from use of fuzzy logic is a smooth  and effective blending of 
the  behaviors.  In  the  Sojourner rover, if one of the behaviors is active, the  other behav- 
iors are  completely  turned off. Thus, when a transition between the  behaviors  occurs,  it is 
characterized by an  abrupt  and discontinuous  change  in the movement of the rover. The 
Sojourner  speed  is very slow (7  mm/sec),  but  future rovers with  more  ambitious scientific 

5Note  that  there exists an underlying fuzzy  logic engine, comprised of many  lines of code, which interprets 
the fuzzy rules, but  this  complexity is not visible to  the algorithm designer. The point of comparison is not 
that  the fuzzy algorithm requires fewer  lines of code, but  rather  that  the much higher level of abstraction of 
fuzzy  logic facilitates  creation,  understanding,  and modification of the navigation algorithm. 
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missions will be  faster  and  such  abrupt changes  in movement may  become a problem.  In  the 
fuzzy navigation  strategy,  the  behaviors  are blended smoothly  using  the weights  described  in 
Section 5. A rover controlled by this  system moves smoothly  toward  the goal  while  avoiding 
obstacles  and seeking paths of high  traversability,  as  illustrated  in  Section 7. 

In  many  cases,  the  Sojourner  navigation  algorithm  executes a successful  local path  to a 
specified goal  (i.e.,  way-point)  location, while avoiding collision with  en-route  obstacles.  In 
other  fairly  simple  cases,  the  Sojourner  algorithm  fails;  Figure 9 illustrates  such a situation. 
In  Figure  9a,  the  proposed fuzzy  .navigation  strategy  finds a smooth  and efficient path from 
the  initial  to  the goal locations, while  achieving collision avoidance.  Figure  9b  illustrates  two 
samples of rover positions  achieved by the  Sojourner  algorithm,  in which the rover alternately 
turns  right, away  from one rock, and  then left to avoid the  other, never  achieving the goal 
position.  Initially  the rover begins to curve  toward the goal location  represented by the 
isolated  outline rover, but  then  it  encounters  the oval-shaped  rock. After  failing to  squeeze 
between the rocks, it  turns  to  the  right,  but  then  it sees the  other rock. It  reacts by turning 
back to  the  left,  but  then  it sees the first rock again,  and  the cycle repeats itself until  the 
rover gives up  and declares  failure. 

Another  example  in which the  Sojourner  navigation  algorithm fails  occurs  when the rover 
encounters a poor. terrain. In these  situations,  the  Sojourner's  behavior is very rudimentary. 
It turns  in 45" inkrements away from the  current  heading  in  the  direction of the goal position 
(right or left)  until its sensors  no  longer  detect  poor  terrain;  it  then  drives  straight for 40 
cm  before  reverting to  its goal-seeking  behavior.  Because the  Sojourner  algorithm  makes  no 
distinction  based  on  where  the region of poor terrain is detected,  this  can  lead  to  oscillatory 
behavior,  as  illustrated  in  Figure 10 which shows the same test  case used for Case Study 
One  (Section 7.1, Figure sa). When  it first detects  the  crater,  the rover turns away  from it 
to  the  left, drives  straight for a short  distance,  then  starts  curving  right  (toward  the  goal), 
which  makes it  encounter  the  crater  again.  This  time  the rover turns  right  (toward  the  goal) 
and keeps turning  right  until  it  has a clear  sensor sweep. Then  it  drives  straight  for a short 
distance  and  starts  curving left  (toward the  goal), which again  makes it  encounter  the  crater. 
This cycle will continue  indefinitely6. 

The conclusions  drawn  from  this  comparative  study  are  summarized below: 

0 The collision  avoidance feature  on  the  Sojourner rover fails in  many cases  where there 
are  clearly collision-free pa.ths for the rover to  traverse. This a consequence of the 
simplistic  nature of its behavior-based  navigation  algorithm. The fuzzy navigation 
strategy,  on  the  other  hand,  has proven to  be  robust  and  reliable for  collision  avoidance. 

0 The  addition of sensors  capable of measuring  the physical properties of the  terrain, such 
as  slope  and  roughness,  out  to  about 10 meters,  along  with fuzzy navigation  rules to  

'jIn fairness to Sojourner,  it  should be noted that  the oscillatory behavior  illustrated in Figures 9 and 10 
is significantly different  on the real rover due to noisy  sensor data, wheel slippage, irregular natural  terrain, 
and many other factors that give the rover a degree of pseudo-random  behavior which might  ultimately allow 
it  to get past obstacles or regions of poor  terrain. 
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take  advantage of this sensor data, provide a significant new capability for autonomous 
navigation on natural  and  unpredictable  planetary surfaces. This  capability  simply  does 
not exist  in the  Sojourner  navigation  algorithm, where the  range of terrain sensing is 
limited to only 81 centimeters. As a consequence, the  Sojourner  algorithm  can lead the 
rover to  an  impassable  terrain or a failure, even when a safe path exists  and is traversed 
by the fuzzy algorithm. 

We conclude that  the fuzzy navigation  strategy developed in this  paper yields superior per- 
formance in comparison  with  the  Sojourner  navigation  algorithm. 

9 Conclusions 
Exploration of planetary surfaces by mobile robots offers several technical challenges. Plane- 
tary rovers must  be  able to  operate  autonomously  and intelligently with  minimal  interaction 
with  Earth-based  operators. To  accomplish  this  goal, the rovers must have the  on-board 
intelligence  needed for long-range  traverse in highly-unstructured,  poorly-modeled  terrains 
with a high level .of robustness  and reliability. Their  on-board intelligence must  be  capable 
of real-time  navigation  and  motion  planning  based on poor  and noisy sensor data. Fuzzy 
logic provides a natural  framework for expressing the  human  reasoning  and decision making 
processes for driving  the rover on a planetary surface. The  human  driving  strategy  can  then 
be  transferred easily to  the  on-board  navigation  system for planetary rovers. 

Rover navigation  strategies based on fuzzy logic have major  advantages over analytical 
methods.  First,  the fuzzy rules that govern the rover motion  are easily understandable, 
intuitive,  and  emulate  the  human driver  experience.  Second, the fuzzy strategy  can  be 
extended very easily to  incorporate new constraints  and new criteria - whereas  this requires 
complete  reformulation  for  analytical  methods.  And  third, fuzzy navigation allows integration 
of multiple  behaviors  into a unified strategy,  together  with  smooth  interpolation  between  the 
behaviors to avoid abrupt  and discontinuous  transitions. 

Although  the  proposed fuzzy navigation  strategy  shares a common  architecture  with  some 
of the references cited here, the fuzzy logic rules'for the goal-seeking and collision-avoidance 
behaviors  and  the  manner in  which the behaviors  are  blended  are different. In  addition,  the 
terrain-traversing  behavior is a new feature  that is introduced for the first time in this  paper. 
It is noted  that  the  graphical  simulation  environment described in Section 6 assumes that  the 
rover position is known exactly  and  the  obstacle  and  terrain sensor data  are noise-free. In 
practice, rover position  measurement  has  some  error  and sensor data is contaminated  with 
noise. Therefore,  it is necessary to conduct  laboratory  tests on a real rover to  validate  any 
navigation  strategy. However, given the multi-valued  nature of fuzzy logic, this  approach is 
expected to  have a reasonable level of robustness in  practice. 

The  autonomous  navigation  strategy developed in this  paper  operates at three levels 
of resolution which are  typically  one  to two  orders-of-magnitude apart.  First,  the global 
information  about  the goal position which is typically up  to 100 meters away. Second, the 
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regional information  about  the  terrain which is typically up  to 10 meters away. And  third, 
the local information  about  the obstacles  which is typically up  to 30 centimeters away. A 
novel contribution of this  paper is the utilization of the  terrain  quality  data  represented by 
the  Traversability  Index in the rover navigation  strategy. The  Traversability  Index  embodies 
the  information  about  the  terrain slope and  roughness  obtained by sensors mounted on the 
rover. The  on-board  traversability analysis  enables the rover to select easy-to-traverse paths 
autonomously.  The  terrain-traversing  behavior  introduced in this  paper is analogous to  the 
human  actions in driving a car, where the  car  speed  and  steering  are  adjusted  continuously 
based  on the  conditions of the  road.  The  autonomous  navigation  strategy  developed in this 
paper is currently  being  implemented on a commercial  outdoor  mobile  robot for test  and 
evaluation. 
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Figure 2. Definition -of rover  variables 
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Figure 7: RGS windows 
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Figure 8: Rover paths using the fuzzy  navigation strategy 

(a) Fuzzy navigation  algorithm 



(b) Sojourner navigation algorithm 

Figure 9: R.over paths for collision avoitlmce 



Figure 10: Rover path using the Sojourner navigation algorithm encounter- 
ing a poorly-traversable terrain 


